The South West Nuclear Hub structures its research under the following themes:

1. Nuclear Materials and Modelling

In safety-critical industries like nuclear energy, expert experimental and theoretical knowledge is vital to secure reliability of physical assets and equipment over its long lifetime. This theme focuses on underpinning industrial use of materials with the fundamental understanding of the inter-relationship between material 'microstructure', nano- to micro-scale, and their physical, chemical and mechanical properties under extreme environmental conditions.

Specific research in this area includes:

  • Materials characterisation – relationship between microstructure and mechanisms
  • Modelling – from nano- to micro- scale measurements
  • Fundamental actinide physics
  • Accident-tolerant nuclear fuels and fuel performance
  • Physical, chemical and mechanical properties of materials extreme environmental conditions
  • Applications for nuclear fission and fusion (and Gen IV technologies such as molten salt reactors)
  • Analysis of metals, alloys, and ceramics, including nuclear reactor graphite.

Theme lead:

2. Systems Risk, Reliability, Security and Resilience

In low carbon energy production, the increasingly competitive renewables are perceived as presenting no risks. To compete beyond baseload production, nuclear energy can reduce costs whilst maintaining public acceptance using cutting edge assurance techniques.

Credit: EDF

Risk, reliability, security and resilience research is developing deep assurance for new nuclear technologies, engaging both nuclear licensees and the regulator through the CINIF (Control & Instrumentation Nuclear Industry Forum) research programme and the Government’s BEIS Nuclear Innovation Programme.

This research theme involves:

    • Powerful new test methods for the safety and security of complex digital systems
    • Objective J-value assessments for more accurate quantification of nuclear risks, allowing risk prioritisation to target effort where it is most cost effective
    • Organisational resilience techniques predisposed to safety in human operations and human-autonomy cooperation

Theme lead:

3. Structural Integrity

In safety-critical industries like nuclear energy, expert experimental and theoretical knowledge is vital to underpin physical assets and equipment over its long lifetime. Structural Integrity covers the investigation of engineering materials and components to help support their successful performance in industrial applications.

Research in this area includes:

  • Damage-tolerance characterisation (e.g. fracture, fatigue, corrosion, creep and their interaction) for nuclear plant lifetime assessment
  • Advanced multi-scale characterization methods (e.g. microstructure, residual stress measurement)
  • Modelling and simulation of structural materials and components

Theme lead:

4. Nuclear Hazards and Risks

In order to reassure regulators, operators and the public of nuclear power generation’s safety, the interaction of radioactive materials and radioactivity with human and physical environments is of great importance to the whole sector.

Research in this area seeks to directly influence decision-making in the nuclear industry on matters of:

  • External hazards to nuclear installations and infrastructure from floods, climate and seismic and volcanic activity at a wide range of temporal and spatial scales
  • Radiological hazards and radiochemistry - associated with contaminated land.
  • Nuclear materials forensics and provenance
  • Radionuclide source detection and analysis

Theme lead:

5. New Materials Development


Theme lead:

6. Waste and Fuel Management

A core part of the nuclear decommissioning process concerns the safe disposal and management of used fuel and waste products. Currently, the UK does not have a long-term storage solution, such as a Geological Disposal Facility, for its nuclear waste, so its interim storage requires significant monitoring and management. Due to the high radioactivity levels involved in storage environments, it is generally impractical or impossible either to take samples of material for analysis, or conduct in-situ monitoring and analysis.

Therefore, research in this area focuses on non-destructive assessment and analysis of materials in storage environments, particularly those where corrosion and other processes have occurred. Research also looks at the fuels used, with the aim of developing advanced, or accident tolerant, fuels to reduce overall lifecycle costs.

This theme includes:

  • Safe and long-term storage of nuclear waste: waste disposal and effluent management
  • Environmental remediation of radionuclides and microstructural analysis of crystalline solids
  • New fuel development: advanced and accident tolerant fuels
  • Analysis techniques: X-Ray Tomography, Raman Spectroscopy

Theme lead:

7. Structural Engineering

Structural Engineering addresses the understanding of the fundamentals of how structures behave to be able to develop more reliable methods of analysis and design.

This area includes:

  • Testing and modelling in the field of control
  • Seismic analysis for plant life extension, nuclear new build and advanced nuclear plants e.g. SMRs and AMRs
  • Structural dynamics and non-linear engineering
  •  Earthquake engineering
  • Soil-foundation interaction

Incorporating seismic safety into the design of a nuclear plant can be very costly, and is often still done in isolation to other safety calculations, making safety margins overly conservative. Likewise, failure to model issues like the soil-structure interface will increase design and construction costs of plant if they are not integrated into the planning process from the start.

Theme lead:

8. Monitoring

Many components in a nuclear power plant are inaccessible once installed, or too radioactive to handle. Therefore, remote inspection and testing is a key tool for monitoring performance and testing for defects.

Equally, radioactive waste materials are stored in large volume packages that are not designed to be accessed for assessment. Thus, there is a need to develop scanning and detection methods to be able to identify and characterise materials within structures.

Theme leads:

9. Robotics

Due to the hazardous nature of some nuclear materials, it is sometimes difficult and time-consuming for human workers to carry out certain tasks. It is therefore safer and more efficient to use robots.

Whilst having the appropriate operating platform is important, the complementary data collection systems are equally necessary for time and cost savings to be realised.

Key research areas in this theme are:

  • Remote inspection and characterisation
  • Waste handling
  • Cell decommissioning
  • Safety & verifiability
  • Underwater interventions
  • UAV-based site monitoring

Theme leads:

10. Digital Engineering

Key research areas in this theme are:

  • BIM and Digital Twins
  • Big Data
  • High Performance Computing
  • Virtual Reality (VR) and Augmented Reality (AR)